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Neuromorphometric characterization with shape functionals
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This work presents a procedure to extract morphological information from neuronal cells based on the
variation of shape functionals as the cell geometry undergoes a dilation through a wide interval of spatial
scales. The targeted shapes area andb cat retinal ganglion cells, which are characterized by different ranges
of dendritic field diameter. Image functionals are expected to act as descriptors of the shape, gathering relevant
geometric and topological features of the complex cell form. We present a comparative study of classification
performance of additive shape descriptors, namely, Minkowski functionals, and the nonadditive multiscale
fractal. We found that the proposed measures perform efficiently the task of identifying the two main classes
a andb based solely on scale invariant information, while also providing intraclass morphological assessment.
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I. INTRODUCTION

Many natural phenomena are defined or influenced by
geometrical properties of the involved elements, and v
versa. Examples of such a shape-function relationship
clude the chemical properties of proteins, the aerodyna
efficiency of wings, and the oxygen exchanges throu
elaborated bronchic structures. A close relationship betw
geometry and function provides strong motivation for t
geometrical analysis of natural objects. Yet, the state of
art of geometrical characterization, an area sometimes ca
morphometry or morphology, remains in a relatively incip
ent stage where several competing, and often divergent
proaches coexist. While powerful methods have been use
physics to express relevant geometrical properties, often
cluding differential measurements such as curvature, the
ation remains particularly challenging in biology.

The relationship between neuronal shape and function
attracted increasing attention due to its far reaching impl
tions for basic neuroscience and medical applications. N
ron morphology has the special characteristic, that it evol
during the developmental stage of the cell, being influen
by its molecular environment and the history of synap
activity @1#. The mature neuronal shape, together with
membrane electrical properties, determines the electric c
ductance of the cell@2# and accounts for part of its electro
physiological characteristics, such as firing patterns
computational abilities@3–6#. Software packages, such a
NEURON, are available for modeling neuronal activity wit
basis on cable theory@7#, which can be useful for an analys
of real or virtual neurons@8–10#. At the same time, neurona
shape can vary for different tissues, depending on a num
of extracellular factors@1,11#. Ultimately, it determines the
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patterns of connectivity and, consequently, the overall n
work computational abilities. On the application side, tas
such as automated morphological characterization of n
ronal shape and the diagnosis of abnormalities deserve
ther investigation.

While the use of morphological tools was severely co
strained until recently by the cost of the relatively sophis
cated systems needed to process images and geometr
continuing advances in computer software and hardw
have paved the way for an ever widening range of poss
applications. Consequently, more effective morphologi
concepts and methods have been developed and report
the literature, including the use of differential geometry co
cepts such as multiscale curvature and bending energy@12–
14#, methods from mathematical morphology such as sk
etonization @15,16#, as well as the recently reporte
framework known as integral-geometry morphological im
age analysis~MIA ! @17–19#. The latter approach involve
the use of additive shape functionals, i.e., mappings that
shapes to single scalar values, in terms of a parameter
ally related to the spatial scale or time. As far as neu
science is concerned, the contour of a neuronal cell has b
shown to possess a fractal structure@20# and its multiscale
fractal dimension has been used to characterize diffe
morphological classes of neuronal cells@21#.

Primarily motivated by the possibility of applying th
methodology proposed in Refs.@18,19# as a novel and po-
tentially useful tool for addressing the problem of neuron
shape characterization and classification, the present w
also provides an assessment of those measures conside
database of real biological data, namely, camera lucida
ages of cat ganglion neuronal cells. In order to provide
comparative reference, the multiscale fractal dimension@21#,
itself a shape functional, is also considered as a measur
shape characterization.

Integral geometry provides an adequate mathemat
framework for morphological image analysis, having a co
of useful theorems and formulaes, which in some cases le
©2003 The American Physical Society10-1
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to analytical results for averages of image functionals@17#
while also being quite efficient to implement computatio
ally @18#. Here, the class of functionals involved is restrict
to additive, motion invariant, and continuous, call
Minkowski functionals. These functionals are related
usual geometric quantities, for instance, in the Euclide
plane, to area, perimeter, and connectivity or the Euler nu
ber, which expresses the number of holes in a conne
pattern such as the image of a neuronal cell.

In order to describe geometrically one object, a set
measures~functionals! is taken and the behavior of thes
measures is monitored, as some control parameter is va
In this work, we compute additive functionals in the plane
the contour of a neuronal cell image is inflated by a para
set dilation of radiusr, the control parameter. The nonadd
tive multiscale fractal dimension is derived from one of the
computed additive functionals, at each radius of dilati
giving important@22# complementary information.

This paper starts by presenting the adopted methodol
the considered shape functionals, and the statistical pr
dure for cell identification. The results, which are presen
subsequently, clearly indicate that the proposed measure
efficient for distinguishing morphologically the two func
tional classesa andb as well as revealing a strong morph
logical coherence in one of the classes.

II. METHODOLOGY

A. Additive shape functionals

The morphological characterization in Euclidean plane
means of shape functionals explores simple properties
convex sets. For these basic geometric objects, such
triangle or an ellipse, we may evaluate a change in area w
the object undergoes a morphological dilation with t
knowledge of its initial geometry. For example, the change
area of a convex bodyK, after a parallel set dilation using
two dimensional~2D! ball of radiusr, can be expressed as

A~Kr !5A~K !1U~K !r 1pr 2, ~1!

whereA(K) andU(K) stand for the initial area and perim
eter of the objectK, and r is the dilation parameter. Th
process of taking parallel sets generalizes naturally to hig
dimensions, while the change in hypervolume preserves
general form~1! and is given by the Steiner formula

vd~Kr !5 (
n50

d S d

n
DWn

(d)~K !r n, ~2!

where the coefficientsWn
(d) are referred to asquermassinte-

grals or Minkowski functionals,@19#. These functionals, as
generalization of known geometric quantities, are additi
motion invariant, and continuous. Moreover, a theorem
Hadwiger @17,19# states that these functionals form a co
plete set of measures, with the above properties, on the s
convex bodies

f~K !5(
j 50

d

cjWj
(d)~K !. ~3!
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Notwithstanding, the change of any, additive, motion inva
ant, and continuous, functional can be expressed, usin
generalized Steiner formula@17,23#, in terms of the initial
geometric information

f~Kr !5(
j 50

d

(
k50

d2 j

cj S d2 j

k DWk1 j
(d) ~K !r k. ~4!

The notion of connectivity number or Euler characteris
x is central in establishing the aforementioned properties
Minkowski functionals. The usual definition of the conne
tivity from algebraic topology in two dimensions is the di
ference between the number of connectednc components
and the number of holesnh ,

x~K !5nc2nh , ~5!

while in three dimensions the distinction should be ma
between two kinds of holes, namely, cavitiesnhc and handles
~tunnels! nhh

x~K !5nc2nhh1nhc . ~6!

The integral geometry provides an equivalent definition
connectivity number of a convex setK, which is given by

x~K !5H 1, KÞB

0, K5B.
~7!

Of great importance is its property of additivity

x~A!5x~ø i 51
l Ki !

5(
i

x~Ki !2(
i , j

x~KiùK j !

1•••1~21! l 11x~K1ù•••ùKl !. ~8!

Additivity and motion invariance are inherited by th
Minkowski functionals as these are related to the connec
ity number by the following formulas

Wn
(d)~A!5E

G
x~AùEn!dmEn , n50, . . . ,d21

Wd
(d)~A!5vdx~A!, vd5pd/2/G~11d/2!. ~9!

In the above expression,En stands for an-dimensional plane
in Rd. The integral is to be taken for all positions, induced
isometriesG, of En weighted bydm(En), the kinematical
density which is in turn related to the Haar measure on
group of motionsG, see Refs.@17,19,23#.

To sum up, the Minkowski functionalsWn
(d)(A), as a gen-

eralization of the usual procedure for volume determinati
count the number of possible intersections of
n-dimensional plane with the domainA.

If one is to take advantage of the above additivity pro
erty, all intersections in Eq.~8! must be taken into accoun
When working on a lattice, there is a more expedient rou
exploring the discrete nature of the images and the additi
0-2
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of the Minkowski functionals, which consists of a decomp
sition of the 2D bodyA into a disjoint collection of interior
bodies, open edges, and vertices. Following the usual
menclature, we denote the interior of a setA by Ă5A/]A.
For an open interior of ann-dimensional body embedded i
a d-dimensional Euclidean space, there is the following
pression for the Minkowski functionals@19#:

Wn
(d)~Ă!5~21!d1n1nWn

(d)~A!, n50, . . . ,d. ~10!

We may then apply additivity and the lack of connectivity
open sets on the lattice to determine the functionals for
body as a whole:

Wn
(d)~P!5(

m
Wn

(d)~N̆m!nm~P!, n50, . . . ,d. ~11!

Here nm(P) stands for the number of building elements
each type m occurring in the patternP. For a two-
dimensional space, which is our interest for the present n
ron images, we display in Table I the value of Minkows
functionals for the building elements on a square lattice
pixels and their direct relation to familiar geometric quan
ties on the plane. Using the information presented in Tab
and Eq.~11!, we have

A~P!5n2 , U~P!524n212n1 , x~P!5n22n11n0 .
~12!

So, the procedure of calculating Minkowski functionals o
patternP has been reduced to the proper counting of
number of elementary bodies of each type that compos
pixel ~squares, edges, and vertices! involved in the make up
of P.

In Sec. III we describe typical results for the evaluation
the above presented additive functionals using an actual
ron image. The procedure involves the implementation
first, an algorithm for the proper parallel set dilation throug
out all permitted radii on the square lattice and, second, o
algorithm for the calculation of Minkowski functionals b
counting disjoint building elements based on the formu
~12!. An efficient routine for undertaking the latter is d
scribed in detail in Refs.@18,19#.

B. Multiscale fractal dimension

As an example of a related nonadditive functional, we a
to the previous measures the multiscale fractal, an appro
which has been applied successfully to neuromorphom
@22#. The notion of multiscale fractal dimension refers to

TABLE I. Minkowski functionals of elementary open bodie
which compose a pixelK.

m N̆m W0
(2)5A(N̆m) W1

(2)5
1
2 U(N̆m) W2

(2)5px(N̆m)

0 P̆ 0 0 p

1 L̆ 0 a 2p

2 Q̆ a2 22a p
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quantitative characterization of complexity and the degree
self-similarity at distinct spatial scales, see Refs.@21,22#. In-
tuitively, the fractal dimension indicates how much the cur
extends itself throughout the space. As a consequence, m
intricate curves will cover the surround space more eff
tively and will display a higher fractal dimension. This qua
tity is calculated via the derivative of the logarithm of th
changing interior area as the neuron cell image undergo
dilation. As such it is immediately derivable from the fir
additive functional~area! in a pixel based approach as o
posed to a curvature approach, see Ref.@21#.

C. Implementation

We have conducted the evaluation of the functionals
scribed above on a 800 MHz ordinary personal compu
running Linux. Both the algorithm for exact dilations on th
square lattice, according to Ref.@24#, and the pixel based
algorithm for the estimation of the Minkowski functiona

FIG. 1. Area ~in pixels! as a function of the scale radius~in
pixels! for a typical a neuronal cell given in Fig. 6. Subtle infor
mation in this graphic is revealed only through the multi-scale fr
tal dimension.

FIG. 2. Perimeter~in pixels! as a function of the scale radius~in
pixels! for the a neuronal cell of Fig. 6. Note the expected initi
decline and a visible fine structure associated with the disappea
and less frequently appearing holes.
0-3
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BARBOSA, da FONTOURA COSTA, AND de SOUSA BERNARDES PHYSICAL REVIEW E67, 061910 ~2003!
@19# were implemented inSCILAB-2.6. It took '40 s to cal-
culate the functionals for each dilation radius.

III. RESULTS

We start by describing a measure that is perhaps the
plest one, but holds important information not only on
own but also through relation with the multiscalar frac
dimension described in Sec. II B. In Fig. 1, we show t
typical monotonically increasing curve of the interior area
a neuron cell as its contour is inflated by a parallel set p
cedure. To capture the gross structure of this measure
calculate the area under curvesuma and, in a size indepen
dent manner, radiusR1/2

a at which the area below this curv
reaches half of its value at the end of dilation. The fine str
ture is given by its standard deviationstda.

In Fig. 2, we show a typical curve of the perimeter of t
evolving frontier of the neuron cell as the contour is inflat
by a parallel set procedure. It is important to observe that

FIG. 3. Connectivity and the difference between data and in
polation for the typicala neuronal cell, Fig. 6, as a function o
parallel set dilation radius~in pixels!.

FIG. 4. Comparison between the connectivities of typicala and
b cells showing a different range~in pixels! of complexity for the
two class of neurons.
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measure is affected by errors introduced by the discrete
ture of the lattice of pixels and the low resolution of th
original image, which become more acute inb cells because
of their reduced size. Nonetheless, this effect tends to be
important after the tenth radius or so. To capture the gr
structure of this measure, we calculate the area under c
sump and the size independent radiusR1/2

p at which the area
below this curve reaches half of its overall value. The fi
structure is given simply by the standard deviation of t
data,stdp.

In contrast to the preceding measure, the connectivity
the Euler number of the neuron shape as it undergoes
dilation processes is independent of the resolution of the
age. It is a measure restricted to the topology of the sh
counting essentially the number of holes at each radius
dilation, no matter the holes are perfectly round or not. T

r-
FIG. 5. Multiscale fractality of a neuronal typea cell. This

attribute is obtained from the area functional and shows the
structure that is not revealed by this functional alone. Dilation
dius in pixels.

FIG. 6. Initial neuron image.~See Ref.@26#.!
0-4
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alterations of connectivity are subtle from step to step, wh
is reflected by the complex distribution of cusps in Fig.
The vast amplitude of scale for which there is an abr
change of connectivity is a measure of complexity of t
type of cell. Figure 4 shows the particular behavior of t
connectivity, for samples from the two classes, as the
shape undergoes a dilation. We take the gross informatio
this measure by extracting the area under the interpol
curvesuminterp and by a monotonicity index given by

i s5
s

s1d1p
, ~13!

wheres,d, andp count, respectively, the number of times t
curve increases, decreases, and reaches a plateau. This
characterizes a perfect monotonically increasing curve w
its value is 1 and reaching its minimum value for a curve
high variability. This measure is designed specially to e

FIG. 7. The same neuron image after the parallel set dilation

FIG. 8. Clustering ofa andb cells based onR1/2
p ~in pixels! and

connectivity measures.
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plore the multiscale nature of the neuronal complexity. T
finer structure is captured solely by the standard devia
stddiff of the difference between the interpolated curve a
the original data.

As a measure of complexity, the multiscale fractal dime
sion has been experimentally found to be related to the c
nectivity of a shape. Although this relationship is n
straightforward, there might be a correlation between th
measures as commented below. For this image functional
evaluate the maximum fractal dimension, the mean fracta
and the standard deviation, respectively,max, mean, and
stdf . A typical curve for the multiscale dimension is show
in Fig. 5 for the same neuron appearing in Figs. 6 and 7

Among all the considered measurements, we found
good separation ofa andb type cells for the feature spac
defined by the perimeter half integral radiusR1/2

p , and the
standard deviation for the fine structure of connectivi
stddiff. Figure 8 shows the obtaineda andb clusterings with
both classes exhibiting similar dispersion. Another good
sult for morphological characterization was obtained for

FIG. 9. The feature space based on the index of monotoni
and the integral of the connectivity~interpolated! curve, for botha
andb cells showing a strong clustering of theb neuron class and a
much disperseda class.

FIG. 10. A not decisive feature space: related measures
high ~anti-!correlation. Half integral radius in pixels.
0-5
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TABLE II. Correlation coefficients for the set of the measures extracted from area, perimeter, connectivity, and fractality: s
deviations (stda,p, f , stddiff), integrals (suma,p, suminterp), half radii (R1/2

a,p), the monotonicity index (is), mean value~mean!, and max value
~max!. Bold face for absolute values of correlation above 0.5.

Area Perimeter Connectivity Fractality

stda suma R1/2
a stdp sump R1/2

p stddiff suminterp is stdf max mean
stda 1
suma 0.96 1
R1/2

a 0.51 0.41 1
stdp 0.86 0.96 0.33 1
sump 0.97 0.99 0.45 0.94 1
R1/2

p 0.13 0.01 0.78 20.05 0.03 1
stddiff 0.78 0.88 0.15 0.90 0.87 20.27 1
suminterp 20.79 20.92 20.22 20.98 20.90 0.17 20.92 1
is 0.33 0.44 0.34 0.52 0.44 20.02 0.43 20.57 1
stdf 20.24 20.27 0.16 20.19 20.27 0.58 20.40 0.27 20.34 1
max 20.34 20.18 20.86 20.01 20.23 20.65 0.05 20.07 20.22 0.10 1
mean 0.14 0.30 20.63 0.39 0.26 20.88 0.55 20.49 0.22 20.64 0.63 1
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connectivity or the Euler number of the cell shape. A feat
space involving the index of monotonicity and the integral
the interpolated connectivity curve is presented in Fig.
More efficient than the former in separating the two class
these measures produce a well-localized clustering ofb cells
characterizing its geometrical intricacies. This result sugg
that a class is indeed a more homogeneous category, w
the b class may have a morphological subclass structure

Table II shows the correlation coefficients for the 12 me
surements considered in this work. Of special interest is
correlation between fractality and connectivity, measures
have experimentally been found to represent complemen
but not redundant measures of complexity. Figure 10 show
combination of two measures to form a feature space, wh
in this case shows a poor separation of classes, this i
accordance with the high anti-correlation of the involv
measures, presented in Table II. Unusually high correla
appears between some measures, notably as occurring
tween area and perimeter, suggesting a specific tendency
seems to be particular to the type of data~neurons! and not a
general rule.

IV. CONCLUSIONS

The use of additive shape functionals has been rece
considered for the characterization of the geometrical pr
erties of several physical objects@17,19#. The current paper
explored the use of a representative set of such function
namely, the area, perimeter, and connectivity, for the cha
terization of neural shapes represented in terms of a w
set of parallel expansions. The multiscale fractal dimens
a nonadditive shape functional, was also considered a
standard for comparison.

All the adopted shape functionals consist of functions
the dilating radius of each parallel body. For the sake
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efficiency, the following compact subset of global featur
was selected: the area under the functionals, the valu
radius where the area reaches its half-value, the stan
deviation of the functionals, as well as proposed measu
ments expressing the monotonicity of the functionals and
decomposition of the connectivity functional in terms of
low and high variation signals.

All two-by-two combinations of these measures were
vestigated visually in order to identify the combinations
features leading to more pronounced separations betwee
two classes of considered neural cells, namely, cat ret
ganglion cells of typea andb. The coefficients of correla-
tion of each pair of measures were also estimated and
lyzed, indicating decorrelation between several of the c
sidered features. The obtained results confirmed
differentiated potential of each measurement for neural
clustering, with the features derived from the connectiv
functional accounting for the best separation betwe
classes. However, further investigation and comparison
more established and recent methods~such as in Ref.@25#!
based explicitly on dendritic morphology will be necessa
to reveal the best realization of the different methodolo
proposed in this paper. The biological implications of su
results are that the two type of cells differ in the distributi
of holes ~defined by the respective dendritic arborization!
for different spatial scales. The obtained clusters indica
that thea cells exhibit less uniform geometrical propertie
than theb, suggesting the existence of morphological su
classes.
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