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Neuromorphometric characterization with shape functionals
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This work presents a procedure to extract morphological information from neuronal cells based on the
variation of shape functionals as the cell geometry undergoes a dilation through a wide interval of spatial
scales. The targeted shapes arand 3 cat retinal ganglion cells, which are characterized by different ranges
of dendritic field diameter. Image functionals are expected to act as descriptors of the shape, gathering relevant
geometric and topological features of the complex cell form. We present a comparative study of classification
performance of additive shape descriptors, namely, Minkowski functionals, and the nonadditive multiscale
fractal. We found that the proposed measures perform efficiently the task of identifying the two main classes
« andB based solely on scale invariant information, while also providing intraclass morphological assessment.
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[. INTRODUCTION patterns of connectivity and, consequently, the overall net-
work computational abilities. On the application side, tasks
Many natural phenomena are defined or influenced by theuch as automated morphological characterization of neu-
geometrical properties of the involved elements, and viceonal shape and the diagnosis of abnormalities deserve fur-
versa. Examples of such a shape-function relationship inther investigation.
clude the chemical properties of proteins, the aerodynamic While the use of morphological tools was severely con-
efficiency of wings, and the oxygen exchanges througtstrained until recently by the cost of the relatively sophisti-
elaborated bronchic structures. A close relationship betweetated systems needed to process images and geometry, the
geometry and function provides strong motivation for thecontinuing advances in computer software and hardware
geometrical analysis of natural objects. Yet, the state of théave paved the way for an ever widening range of possible
art of geometrical characterization, an area sometimes callesbplications. Consequently, more effective morphological
morphometry or morphology, remains in a relatively incipi- concepts and methods have been developed and reported in
ent stage where several competing, and often divergent, aghe literature, including the use of differential geometry con-
proaches coexist. While powerful methods have been used icepts such as multiscale curvature and bending erjé2yy
physics to express relevant geometrical properties, often int4], methods from mathematical morphology such as skel-
cluding differential measurements such as curvature, the sitetonization [15,16, as well as the recently reported
ation remains particularly challenging in biology. framework known as integral-geometry morphological im-
The relationship between neuronal shape and function hasge analysiSMIA) [17-19. The latter approach involves
attracted increasing attention due to its far reaching implicathe use of additive shape functionals, i.e., mappings that take
tions for basic neuroscience and medical applications. Neushapes to single scalar values, in terms of a parameter usu-
ron morphology has the special characteristic, that it evolveslly related to the spatial scale or time. As far as neuro-
during the developmental stage of the cell, being influencedcience is concerned, the contour of a neuronal cell has been
by its molecular environment and the history of synapticshown to possess a fractal struct{iZ®] and its multiscale
activity [1]. The mature neuronal shape, together with itsfractal dimension has been used to characterize different
membrane electrical properties, determines the electric comorphological classes of neuronal cdl&{].
ductance of the ce[l2] and accounts for part of its electro-  Primarily motivated by the possibility of applying the
physiological characteristics, such as firing patterns andnethodology proposed in Refgl8,19 as a novel and po-
computational abilitied3—-6]. Software packages, such as tentially useful tool for addressing the problem of neuronal
NEURON, are available for modeling neuronal activity with shape characterization and classification, the present work
basis on cable theofyr], which can be useful for an analysis also provides an assessment of those measures considering a
of real or virtual neurong8—10]. At the same time, neuronal database of real biological data, namely, camera lucida im-
shape can vary for different tissues, depending on a numberges of cat ganglion neuronal cells. In order to provide a
of extracellular factorg1,11]. Ultimately, it determines the comparative reference, the multiscale fractal dimenpin,
itself a shape functional, is also considered as a measure for
shape characterization.

*Electronic address: marconi@if.sc.usp.br Integral geometry provides an adequate mathematical
"Electronic address: luciano@if.sc.usp.br framework for morphological image analysis, having a core
*Electronic address: sousa@if.sc.usp.br of useful theorems and formulaes, which in some cases leads
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to analytical results for averages of image functiorjalg Notwithstanding, the change of any, additive, motion invari-
while also being quite efficient to implement computation-ant, and continuous, functional can be expressed, using a
ally [18]. Here, the class of functionals involved is restrictedgeneralized Steiner formuld7,23, in terms of the initial

to additive, motion invariant, and continuous, calledgeometric information

Minkowski functionals. These functionals are related to

usual geometric quantities, for instance, in the Euclidean ‘Y d—] (d) K

plane, to area, perimeter, and connectivity or the Euler num- ‘i’(Kr):JZO go Cj k Wi j (KT 4
ber, which expresses the number of holes in a connected

pattern such as the image of a neuronal cell. The notion of connectivity number or Euler characteristic

In order to describe geometrically one object, a set ofy js central in establishing the aforementioned properties of
measuregfunctionaly is taken and the behavior of these Minkowski functionals. The usual definition of the connec-
measures is monitored, as some control parameter is varieglyity from algebraic topology in two dimensions is the dif-

In this work, we compute additive functionals in the plane asference between the number of connectedcomponents
the contour of a neuronal cell image is inflated by a parallelnd the number of holes, ,

set dilation of radiug, the control parameter. The nonaddi-

tive multiscale fractal dimension is derived from one of these x(K)=n;.—ny, 5)
computed additive functionals, at each radius of dilation, ) . o
giving |mp0rtant[22] Comp|ementary information. while in three dimensions the distinction should be made

This paper starts by presenting the adopted methodologfetween two kinds of holes, namely, cavitigg and handles
the considered shape functionals, and the statistical procétunnels npy,
dure for cell identification. The results, which are presented
subsequently, clearly indicate that the proposed measures are X(K)=ne=Npp+ N ©)
efficient for distinguishing morphologically the two func-
tional classegr and B as well as revealing a strong morpho-
logical coherence in one of the classes.

The integral geometry provides an equivalent definition for
connectivity number of a convex skt which is given by

1, K#Q
Il. METHODOLOGY XK)=10 k=g @)
A. Additive shape functionals ) o o
The morphological characterization in Euclidean plane byOf great importance is its property of additivity
means of shape functionals explores simple properties of - ! ,
. > x(A)=x(Ui_1K;)

convex sets. For these basic geometric objects, such as a
triangle or an ellipse, we may evaluate a change in area while
the object undergoes a morphological dilation with the :Z X(Ki)_;j x(KinKj)
knowledge of its initial geometry. For example, the change in
area of a convex bodl, after a parallel set dilation using a +o (DT (KN NK)). (8)

two dimensional2D) ball of radiusr, can be expressed as
Additivity and motion invariance are inherited by the
A(K,)=A(K)+U(K)r+mr?, (1) Minkowski functionals as these are related to the connectiv-

o ) ity number by the following formulas
whereA(K) andU(K) stand for the initial area and perim-

eter of the objeck, andr is the dilation parameter. The )
process of taking parallel sets generalizes naturally to higher ~ W, (A)= f X(ANE,)duE,, »=0,...d-1
dimensions, while the change in hypervolume preserves the ¢

general form(1) and is given by the Steiner formula WO (A) = wgx(A),  wg=7Y2T(1+d/2). )

d
vdK)=> (d)w(yd)(K)rv, 2 !n thde aboye expregsioE,V stands for a/-dimgnsional plane
v=0\V in R%. The integral is to be taken for all positions, induced by
isometriesg, of E, weighted bydu(E,), the kinematical

where the coefficientsV(") are referred to aguermassinte-  gensity which is in turn related to the Haar measure on the
grals or Minkowski functionals[19]. These functionals, as a group of motionsG, see Refs[17,19,23.

generalization of known geometric quantities, are additive, T4 sym up, the Minkowski funcUonaW(V )(A), as a gen-

motion invariant, and continuous. Moreover, a theorem by ajization of the usual procedure for volume determination,
Hadwiger[17,19 states that these functionals form a COM-count the number of possible intersections of a

plete set of measures, with the above properties, on the set of 4 ansional plane with the domaik

convex bodies If one is to take advantage of the above additivity prop-
d erty, all intersections in Eq8) must be taken into account.

K)= c WD (K). 3 When working on a lattice, there is a more expedient route,

#(K) jz'o WK @ exploring the discrete nature of the images and the additivity
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TABLE I. Minkowski functionals of elementary open bodies 200’ T T T T T T
which compose a pixek.
MmNy WEP=ANG)  WP=3UR,)  WP=mx(Ny) .
0 ’,D 0 0 T g //,...o-” .
1 L 0 a - - L
Q az _2a - g 1.0x10° [~ w".p/ -
2 . o"(o
of the Minkowski functionals, which consists of a decompo- se«'[- -7 T
sition of the 2D bodyA into a disjoint collection of interior .
bodies, open edges, and vertices. Following the usual no
menclature, we denote the interior of a geby A=A/JA. Zh : p — = : 0
For an open interior of an-dimensional body embedded in Dilation radivs
a d-dimensional Euclidean space, there is the following ex- FiG. 1. Area(in pixels as a function of the scale radium
pression for the Minkowski functiona[4.9]: pixels) for a typical @ neuronal cell given in Fig. 6. Subtle infor-

. mation in this graphic is revealed only through the multi-scale frac-
WA =(—1)8 " " WD(A), »=0,...d. (10) tal dimension.

We may then apply additivity and the lack of connectivity of o3 nitative characterization of complexity and the degree of
open sets on the lattice to determine the functionals for th%elf-similarity at distinct spatial scales, see RE24.,22. In-

body as a whole: tuitively, the fractal dimension indicates how much the curve
extends itself throughout the space. As a consequence, more
W(Vd)(P)ZE V\/(Vd)(Nm)nm(P), v=0,...d. (11 intricate curves will cover the surround space more effec-
m tively and will display a higher fractal dimension. This quan-
o tity is calculated via the derivative of the logarithm of the
Hereny,(P) stands for the number of building elements of cpanging interior area as the neuron cell image undergoes a
each typem occurring in the patternP. For a two-  gijation. As such it is immediately derivable from the first
dimensional space, which is our interest for the present neusqgitive functional(area in a pixel based approach as op-
ron images, we display in Table | the value of Minkowski ysed to a curvature approach, see [R2f).
functionals for the building elements on a square lattice oP
pixels and their direct relation to familiar geometric quanti-

. . . . . C. Impl tati
ties on the plane. Using the information presented in Table | mplementation

and Eq.(11), we have We have conducted the evaluation of the functionals de-
scribed above on a 800 MHz ordinary personal computer
A(P)=n,, U(P)=—-4n,+2n;, x(P)=n,—n;+ng. running Linux. Both the algorithm for exact dilations on the

(120 square lattice, according to RdR4], and the pixel based

) ] ) ) algorithm for the estimation of the Minkowski functionals
So, the procedure of calculating Minkowski functionals of a

pattern? has been reduced to the proper counting of the X
number of elementary bodies of each type that compose : > ' ' ' ' ' '
pixel (squares, edges, and verticas/olved in the make up
of P.

In Sec. Ill we describe typical results for the evaluation of [ 7]
the above presented additive functionals using an actual neL§ L o
ron image. The procedure involves the implementation of, & ° %,
first, an algorithm for the proper parallel set dilation through- § 1eac*- oy .
out all permitted radii on the square lattice and, second, of ars °“°=,%°
algorithm for the calculation of Minkowski functionals by § I "%\\
counting disjoint building elements based on the formulas ,.sF v -
(12). An efficient routine for undertaking the latter is de- Iiaass N
scribed in detail in Refd.18,19. i 1

L | L | ) | s
0.0
0 5 10 15 20

B. Multiscale fractal dimension Dilation radius

As an example of a related nonadditive functional, we add FIG. 2. Perimetefin pixels) as a function of the scale raditia
to the previous measures the multiscale fractal, an approagixels) for the « neuronal cell of Fig. 6. Note the expected initial
which has been applied successfully to neuromorphometrglecline and a visible fine structure associated with the disappearing
[22]. The notion of multiscale fractal dimension refers to aand less frequently appearing holes.
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FIG. 5. Multiscale fractality of a neuronal type cell. This

FIG. 3. Connectivity and the difference between data and interattribute is obtained from the area functional and shows the fine
polation for the typicale neuronal cell, Fig. 6, as a function of structure that is not revealed by this functional alone. Dilation ra-
parallel set dilation radiuén pixels). dius in pixels.

[19] were implemented irsCILAB-2.6. It took ~40 s to cal- measure is affected by errors introduced by the discrete na-
culate the functionals for each dilation radius. ture of the lattice of pixels and the low resolution of the
original image, which become more acutedrcells because
of their reduced size. Nonetheless, this effect tends to be less
important after the tenth radius or so. To capture the gross
We start by describing a measure that is perhaps the singtructure of this measure, we calculate the area under curve
plest one, but holds important information not only on its symP and the size independent radig§,, at which the area
own but also through relation with the multiscalar fractal pelow this curve reaches half of its overall value. The fine
dimension described in Sec. Il B. In Fig. 1, we show thestrycture is given simply by the standard deviation of the
typical monotonically increasing curve of the interior area ofgata stdP.
a neuron cell as its contour is inflated by a parallel set pro- |y contrast to the preceding measure, the connectivity or
cedure. To capture the gross structure of this measure W@e Euler number of the neuron shape as it undergoes the
calculate the area under curgam® and, in a size indepen- jlation processes is independent of the resolution of the im-
dent manner, radiuBj;, at which the area below this curve age. It is a measure restricted to the topology of the shape
reaches half of its value at the end of dilation. The fine struccounting essentially the number of holes at each radius of
ture is given by its standard deviatietd?. dilation, no matter the holes are perfectly round or not. The
In Fig. 2, we show a typical curve of the perimeter of the
evolving frontier of the neuron cell as the contour is inflated
by a parallel set procedure. It is important to observe that this

Ill. RESULTS
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FIG. 4. Comparison between the connectivities of typieand

B cells showing a different ranggn pixels) of complexity for the
two class of neurons. FIG. 6. Initial neuron image(See Ref[26].)
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FIG. 9. The feature space based on the index of monotonicity
and the integral of the connectivitinterpolatedl curve, for botha
and g cells showing a strong clustering of ti#eneuron class and a
much dispersed: class.

FIG. 7. The same neuron image after the parallel set dilation. plore the multiscale nature of the neuronal complexity. The
finer structure is captured solely by the standard deviation
alterations of connectivity are subtle from step to step, Whicht;tddm of the difference between the interpolated curve and
is reflected by the complex distribution of cusps in Fig. 3.the original data.
The vast amplitude of scale for which there is an abrupt As a measure of complexity, the multiscale fractal dimen-
change of connectivity is a measure of complexity of thission has been experimentally found to be related to the con-
type of cell. Figure 4 shows the particular behavior of thepectivity of a shape. Although this relationship is not
connectivity, for samples from the two classes, as the celraightforward, there might be a correlation between these
shape undergoes a dilation. We take the gross information gheasures as commented below. For this image functional, we
this measure by extracting the area under the interpolategh/ajuate the maximum fractal dimension, the mean fractality,
curve suMiyer, @and by @ monotonicity index given by and the standard deviation, respectivelyax, mean, and
stdf. A typical curve for the multiscale dimension is shown
= ’ (13) in Fig. 5 for the same neuron appearing in Figs. 6 and 7.
s+d+p Among all the considered measurements, we found a
) . good separation oft and B type cells for the feature space
where§,d, andp count, respectively, the number of tlmes. th_e defined by the perimeter half integral radig§,,, and the
CUrve increases, decreases, and_ reaches a pl_ateau. This ind@Xngard ‘deviation for the fine structure of connectivity,
_character_|zes a perfect _mor_loton_lc_ally Increasing curve Whegtddiﬁ. Figure 8 shows the obtainedand g3 clusterings with
its value is 1 and reaching its minimum value for a curve ofy) i cjasses exhibiting similar dispersion. Another good re-

high variability. This measure is designed specially 10 eX-t for morphological characterization was obtained for the
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FIG. 8. Clustering ofx and g cells based oY), (in pixels) and FIG. 10. A not decisive feature space: related measures with
connectivity measures. high (anti-)correlation. Half integral radius in pixels.
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TABLE I1l. Correlation coefficients for the set of the measures extracted from area, perimeter, connectivity, and fractality: standard
deviations 6td®P', stdy), integrals 6um®P, SUMineerp)» half radii (R$2), the monotonicity indexif), mean valuémean), and max value
(max). Bold face for absolute values of correlation above 0.5.

Area Perimeter Connectivity Fractality

std® sum? RI), stdP sumP RY, Stdgr ~ SUMinterp is stdf max  mean
std? 1
sum? 0.96 1
R%, 051 041 1
stdP 0.86 0.96 0.33 1
sumP 0.97 0.99 0.45 0.94 1
RP, 0.13 001 078 -005 0.03 1
St 0.78 0.88 0.15 0.90 0.87 -0.27 1
SUMipep ~ —0.79 —092 —0.22 -098 -090 017 —092 1
i 0.33 0.44 0.34 0.52 0.44 —0.02 0.43 —-0.57 1
stdf -0.24 -0.27 0.16 -0.19 -0.27 0.58 —-0.40 0.27 —-0.34 1
max -0.34 -0.18 -08 —-0.01 -0.23 -0.65 0.05 —-0.07 —-0.22 0.10 1
mean 0.14 0.30 —0.63 0.39 0.26 —0.88 0.55 —0.49 0.22 —0.64 0.63 1

connectivity or the Euler number of the cell shape. A featureefficiency, the following compact subset of global features
space involving the index of monotonicity and the integral ofwas selected: the area under the functionals, the value of
the interpolated connectivity curve is presented in Fig. 9radius where the area reaches its half-value, the standard
More efficient than the former in separating the two classesjeviation of the functionals, as well as proposed measure-
these measures produce a well-localized clustering oflls  ments expressing the monotonicity of the functionals and the
characterizing its geometrical intricacies. This result suggestdecomposition of the connectivity functional in terms of a
that « class is indeed a more homogeneous category, whilw and high variation signals.
the B class may have a morphological subclass structure. All two-by-two combinations of these measures were in-
Table 1l shows the correlation coefficients for the 12 mea-vestigated visually in order to identify the combinations of
surements considered in this work. Of special interest is théeatures leading to more pronounced separations between the
correlation between fractality and connectivity, measures thawo classes of considered neural cells, namely, cat retinal
have experimentally been found to represent complementayanglion cells of typex and 8. The coefficients of correla-
but not redundant measures of complexity. Figure 10 shows &on of each pair of measures were also estimated and ana-
combination of two measures to form a feature space, whiclyzed, indicating decorrelation between several of the con-
in this case shows a poor separation of classes, this is isidered features. The obtained results confirmed a
accordance with the high anti-correlation of the involveddifferentiated potential of each measurement for neural cell
measures, presented in Table II. Unusually high correlatiorlustering, with the features derived from the connectivity
appears between some measures, notably as occurring Hanctional accounting for the best separation between
tween area and perimeter, suggesting a specific tendency thalasses. However, further investigation and comparison to
seems to be particular to the type of dataurongand nota more established and recent methdsisch as in Ref[25])
general rule. based explicitly on dendritic morphology will be necessary
to reveal the best realization of the different methodology
IV. CONCLUSIONS proposed in this paper. The biological implications of such
results are that the two type of cells differ in the distribution
The use of additive shape functionals has been recentlgf holes (defined by the respective dendritic arborizatjons
considered for the characterization of the geometrical propfor different spatial scales. The obtained clusters indicated
erties of several physical objedis7,19. The current paper that thea cells exhibit less uniform geometrical properties
explored the use of a representative set of such functionalshan thes, suggesting the existence of morphological sub-
namely, the area, perimeter, and connectivity, for the charalasses.
terization of neural shapes represented in terms of a whole
set of parallel expansions. The multiscale fractal dimension,
a nonadditive shape functional, was also considered as a
standard for comparison. The authors are grateful to FAPESBrant Nos. 02/
All the adopted shape functionals consist of functions 0f02504-01, 99/12765-2, and 96/0549)7aBd to CNPQGrant
the dilating radius of each parallel body. For the sake ofNo. 301422/92-Bfor financial support.
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